If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+6t+800=0
a = -4.9; b = 6; c = +800;
Δ = b2-4ac
Δ = 62-4·(-4.9)·800
Δ = 15716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15716}=\sqrt{4*3929}=\sqrt{4}*\sqrt{3929}=2\sqrt{3929}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{3929}}{2*-4.9}=\frac{-6-2\sqrt{3929}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{3929}}{2*-4.9}=\frac{-6+2\sqrt{3929}}{-9.8} $
| 2a-5/3+a/2=3 | | 3x+9=-11 | | -x^2-2x+38=0 | | 5^x=-4^-x+4 | | 2x+1+(x+2)=138 | | 7+28=28+21m | | 1/2x-1=(1/3)^2x-1 | | 7+28m=28+2 | | 4(a+2)=8a+4a | | 2x+34=50 | | 2^x+6=2x+15 | | -12x12=-72 | | 2.5y=9 | | 8/7=5/x | | 8x=3x+3 | | 9^x=(1/3)^2x-4 | | 8x/10x-2=5x+3/7x | | 1x+5=15x+3 | | 17-6x=-73 | | 2x+x(x+10)=90 | | C^2+13=8c^2 | | X+2x(x+10)=90 | | 36=1/2(x+2)(3x+12) | | 3/7m=11 | | 2/3x−10=20 | | 4w-26=17 | | 2x+3x+4x=x | | X=2x(x+10) | | 3+7z+z2=0 | | 162+72m=253 | | 3x/4-2(4+2x)=1/2x+1/4 | | -8=p-17 |